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The Autonomous Vehicle Industry has come a long way in the past 
decade or so. Truly futuristic progress has taken place where 
self-driving vehicles are concerned. A lot of resources and testing are 
being spent on road testing which has been deemed as a very important 
part of the process. However, road testing alone is simply not adequate 
and not easible when it comes to ensuring the safety of humans and 
vehicles on road. It would take us about a century to complete the 
testing of one self-driving vehicle model if we only rely on physical 
testing.

Every year, 1.24 million people die in traffic accidents and 50 million are injured worldwide
(WHO data, 2013), and over 90% of these collisions are due to human error. The deployment of Level 5 
autonomous vehicles can potentially save hundreds of thousands of lives every year. Simulation has a 
big role to play in accelerating the development of this sector. Industry leaders across the globe 
including companies like General Motors, BMW, Audi, Volkswagen are leveraging virtual testing to 
validate and to verify Advanced Driver Assistant Systems (ADAS) and autonomous driving systems.

This is where MSC Software wants to make a significant contribution through solutions like VTD where 
we experiment every relevant driving condition, including system faults and errors. Companies like 
Waymo is running a fleet of 25,000 virtual cars 24/7, simulating 13 million kilometers per day. 
Simulation is critical to us for achieving billions of miles of testing for automated driving development.

With our e-book on autonomous driving, we hope the readers will gain valuable insights on recent 
Research and Development in the self-driving space. The book also endeavors to shed some light on 
why autonomous driving is important and what is realistically achievable in the next 5 to 10 years.

Dr. Luca Castignani
Head of Autonomous Mobility Strategy, MSC Software
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Volkswagen Group: 
Leveraging VIRES VTD   
to Design a Cooperative  
Driver Assistance System

By Dr. Kai Franke, Development Online Driver 
Assistance Systems, Volkswagen AG
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“A combination of ADTF, VTD, 
and OMNet++ allows us to do a 
host of experiments to test and 

validate cooperative driver 
assistance systems.”

‘Cattention in recent years within automobiles. 
In order to increase the quality of signals, 

the availability and the perception range as well as to 
decrease the latency and the probability of total failure, 
advanced perception systems consisting of camera, 
radar and lidar systems with vehicle-to-vehicle (V2V) 
communication are required. Moreover, V2V 
communication enables advancements from individual 
to cooperative decision making. Advanced driver 
assistant systems (ADAS), which determine their 

“cooperative behavior”, are capable of increasing the 
total utility of a group of cooperative vehicles. However, 
several technical issues have to be resolved on the way 

systems (CDAS) on our public streets. For example, 
handling the misuse of the communication channel and 

Figure 1. VIRES VTD is an open platform for developing 
Advanced Driver Assistance Systems 

the consideration of unequipped vehicle are some of 
the key challenges for cooperative driving.

This article focuses on a test framework for CDAS, 
which can be leveraged to master the complexity of 
distributed driver assistance systems (DAS) during 
the development process. A combination of ADTF 
(the application prototyping framework within the 
Volkswagen group), VTD (Figure 1, a simulation 
tool-chain from VIRES GmbH) and OMNet++ (an 
open-source component-based network simulator) 
allows us to do a host of experiments to test and 
validate cooperative driver assistance systems.

Simulation Framework

Since the development of CDAS requires at least two 
interacting vehicles, the implementation and the 

framework for connected vehicles. Figure 2 gives an 
overview of the proposed architecture used within 
this project (reference 1). The detailed description of 
interfaces and functionality follows hereinafter. 

A. Application

planner implemented in ADTF (Automotive Data and 
Time triggered Framework) and a controller for each 
involved vehicle. There are three relevant interfaces 

environmental model and the current vehicle state 
provided by the simulation gateway. The second 
interface to the network enables the communication 
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between vehicles. The last interface to the simulation 
gateway realizes the controllability of the vehicle.

B. Simulation Gateway

For each vehicle (here an example is shown for three 

among others two tasks: the modeling of the perception 
(environment and vehicle state), and the reaction to 
controller outputs. The interface for the vehicle state 
includes, but is not limited to, the velocity, the longitudinal 
and lateral acceleration, and the steering wheel angle. 

C. Virtual Environment

The software Virtual Test Drive (VTD) developed by 
VIRES provides the virtual environment we used. 

The central component is the task control 
coordinating additional modules with the help of the 
module manager. Additional modules are the 
scenario with roads and vehicle information, the 

controlled vehicles and the Image Generator (IG). 
The virtual environment transmits its information via 
Ethernet on the Real Time Data Bus (RDB) 
interface. Furthermore, the Simulation Control 
Protocol (SCP) interface provides a mechanism for 
operating the simulation.

D. Network

The network simulation can emulate the 
communication of the application via for example, 
ETSI ITS G5. In order to simulate the signal damping, 
the analog model uses information about line of sight 
and distances between the communicating vehicles. 
The RDB interface and the map of VTD (*.xodr 
format) contain the required information.

Simulation Results

A. Decentralized Decision Making

An example of a merging scenario on a highway is 
chosen to demonstrate the usability of the decentralized 
decision making (see Figure 3). The red vehicle wants to 
merge onto the highway, while the two lanes are 
blocked by a truck (yellow) and another vehicle (blue). 
The lane width amounts to three meters each.

Figure 3. Results of the planning methods for the merging 
scenario of three vehicles

Figure 2. Overview of the VW simulation framework



Three different planning algorithms generate offers 
for the merging scenario. It can be seen that the 
planning methods (a) and (b) recommend a lane 
change for the truck, while method (c) makes the 
truck stay in its lane. Planner (b) starts the lane 
change later than planner (a). Planner (c) solves the 

merging maneuver of the red vehicle behind the 
truck. The diversity of the offers results from different 
discretizations and different evaluation criteria. In 
order to demonstrate the decentralized decision 
making process, a cost function based on a fuzzy 
logic is applied, which enables a continuous 
prioritization between comfort, driving enjoyment, 

preferences of each vehicle. The truck focuses on 

and the blue vehicle prioritizes comfort.

Each vehicle comes to a different evaluation or rating 
of the offers, because of the varying preferences. 
The varying preferences can be caused by different 
brands, different vehicle models (sedan, van or SUV), 
or by an online driver monitoring system. Table II 
shows the results of the evaluation of each plan by 
each vehicle and the result of the two proposed 
selection criteria. The selected solution (bold) 
represents the compromise of the solution options. 
Plan (c) is selected by the sum criterion and plan (a) 
is selected by the squared sum criterion.

B. Closed Loop Simulation

The closed loop or hardware-in-the-loop simulation 
enables a study to evaluate the control error 
considering communication and calculation latencies 

of planner, controller, and vehicle dynamics. An 
application for collision avoidance exemplarily 
demonstrates the closed loop performance (Figure 4).

As an initial scenario, a driver starts an overtaking 
maneuver on a rural road. The driver misjudges the 
situation and the danger of a collision with the 

detects the danger and starts/triggers the 
cooperative maneuver planning. The detection 
criterion could also be the time to collision (TTC). The 
TTC is calculated as the quotient of distance and 
relative velocity. The calculated cooperative 
maneuver plan targets the completion of the 
overtaking maneuver of the red vehicle and a 
deceleration of the truck and the blue vehicle.

longitudinal controller has a linear increasing controller 
error. This is caused by a constant velocity error. A 
possible reason is that the longitudinal controller does 

maneuver. In this case the vehicle decelerates 
stronger than planned. The lateral controller shows an 
overshooting. The vehicle stays with 50 cm maximum 

“The proposed
simulation framework

allows a �exible
modular combination of
software components.”
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controller error in a safe condition (stays on road, no 
collisions with obstacles). This error is caused by 
latencies and systematic errors in the feed forward 
controller. However, systematic errors, difference 
between vehicle dynamics model and inverted model 
in the feed forward controller, are made on purpose. 
A perfect vehicle dynamics model in the feed forward 
controller is impossible in reality, because of for 
example changing loads, changing wheel 
characteristics, and changing surface etc. Further 
controller adaption will be done with the help of real 

Conclusions 

A new CDAS (Cooperative Driver Assistance System) 
imposes new requirements on simulation methods. 
The high degree of connectivity and interaction of the 

applications disable a development and later 
validation without considering the multi-directional 

components and considers modeling of perception, 
communication, and controlling of several vehicles in 
a virtual environment.

Reference

1. “A Cooperative Driver Assistance System: 
Decentralization Process and Test Framework” by Kai 

Jörn Günther, Proc. 7th Tagung 
Fahrerassistenzsysteme Conf., 2015. 

2. Source: https://pdfs.semanticscholar.rg/6361/393b-
8c4067f857bf68f8ea7b79588eb19aba.pdf

Figure 5. Results of closed loop simulation
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NATO: Leveraging  
Adams and Luciad 
to Assess Mobility 
Characteristics of a  
Military Ground Vehicle

By Hemanth Kolera-Gokula,  
Product Marketing Manager, MSC Software
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The mobility of a ground vehicle can be the difference 
between mission success and mission failure on the 
battle�eld. In today’s defense environment, there is a 

need to create rapidly deployable, highly mobile vehicle 
platforms that operate reliably across various terrain and road 
types. Vehicle simulation capabilities for assessing performance 
for different environmental conditions and operational scenarios 
have increased signi�cantly in recent years. 

In support of the Next Generation NATO reference mobility 
model (NG-NRMM) project for assessing existent CAE mobility 
analysis capability different facets of the Hexagon product 
portfolio were used to asses and visualize the mobility of the 
FED-Alpha, a Fuel Ef�cient Demonstrator vehicle (Figure 1). 
Adams models was created and validated against real-world 
calibration data by a team comprising of Eric Pesheck, 
Venkatesan Jeganathan, Tony Bromwell, Aniruddh Matange 
and Paspuleti Rahul Naidu to support this effort. These 
validated models were then used to accurately predict vehicle 
performance under a variety of on- and off-road operational 
scenarios. Select results from these investigations were 
integrated into Luciad, part of the Hexagon Geospatial 
portfolio, via a customized application for visualization and 
mobility mapping. Additionally, real-time compliance of the 
Adams model to support various autonomous and “Hardware-
in-the-Loop” scenarios was demonstrated. 

Creating and Validating the Adams Model

Adams Car, a solution vertical in the Adams portfolio focused on 
the modeling and simulation of vehicle assemblies and sub-
systems was used to create a full-vehicle model of the FED-

Alpha. Adams Car uses a template-based approach to model 
building; Reusable parametric templates of sub-systems such as 
chassis, tires, powertrain etc. can be populated with vehicle data 
and integrated to create a full vehicle assembly as shown in 
Figure 2. Typical model data includes design hard points, part 
mass properties, and component compliance characteristics. 
Adams Car allows detailed component representations, such as 
�exibility, friction, or frequency-dependent behavior where 
warranted. The level of �delity and detail employed in the model 
was based on the simulation intent and available design data. 

The accuracy of the model was validated by comparison 
against data gathered from various vehicle test events. Metrics 
related to vehicle behavior, dynamics and ride quality were 
compared for model validation. 

Figure 1 Mobility modeling for the NG-NRMM program

Adams/Car

Parametric 
Vehicle 
Model 

Architecture

Real-Time Model
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• Lane-change
• Cornering

• Ride

• RMS roads
• Halfrounds
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• Drawbar

• Sand Climb

• Traverse

• Drawbar

• Traverse  
(with EDEM)

• Mapping

• Route Selection 
(with Luciad)

Virtual Test Drive

Uncertainty 
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Simpli�ed Terramechanics

Rigid Road

Figure 2 FED-Alpha Vehicle Assemble in Adams
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Predicting Vehicle Performance Using the 
Adams Model

The validated Adams model was then used to simulate various 
vehicle events to evaluate vehicle performance and mobility. 
These events consisted of both on and off road usage to mimic 
real battle�eld scenarios. Typical military on-road evaluation 
events such as double lane change, indicating limit handling 
performance, half rounds, indicating ride quality, and step 
climbs, indicating obstacle navigation ability, were stimulated, 
with good agreement to test. 

Evaluation of off-road performance is critical since 
achievement of certain mission objectives could require 
operation over unprepared terrain. Of crucial importance in off 
road modeling are the representation of the terramechanics; 
the soil properties and the interaction between the tire and 
the soil surface. Simple and detailed models for the 
description of the terramechanics were utilized in this 
initiative. Simple terramechanics models use empirical 

Figure 4 Adams EDEM Co-Simulation work�ow

Figure 3 Adams Model Validation against Test Data

relationships, based on experimental measurements, to 
predict the response of deformable terrain to vehicle 
operation. These methods are computationally ef�cient, and 
were used to assess vehicle performance for well-de�ned 
draw-bar and hill-climb analyses. In addition, these methods 
were applied to scanned terrain geometry for more 
generalized off-road performance analyses. 

In addition, the computational ef�ciency of this method 
facilitated the support of stochastic analysis approaches, 
where uncertainties due to variations in model and terrain 
inputs were also accounted for, statistically. These stochastic 
simulations represented hundreds of potential soil 
characteristics, and allowed prediction of vehicle 
performance over a statistical range of soil and terrain 
properties and resultant development of con�dence intervals 
for vehicle performance.

Higher �delity approaches, where the soil properties emerged 
from simulated particle interactions were also employed. This 
was accomplished using a co-simulation between Adams and 
EDEM, a Discrete Element Method (DEM) based simulation 
offering from DEM solutions. In the DEM method, the material 
is represented by a collection of interacting particles with 
simple shapes (typically based on circles and spheres). The 
typical co-simulation work�ow between Adams and EDEM is 
as shown in Figure 3. Potential EDEM contact is de�ned for 
designated vehicle parts. The displacement of these parts is 
determined by Adams and provided to EDEM. EDEM then 
determines the resultant reaction forces, which are passed 
back to Adams. 

Using these approaches, tests such as a drawbar pulls, and 
sand-bed acceleration were simulated to gauge tractive 
behavior of the FED under various off-road scenarios. Though 
computationally intensive, these simulations were proved to 
add signi�cant �delity and result in more accurate correlation 
to test results. 

WORKFLOW

1. Set-up EDEM simulation 2. Set-up Adams simulation

3. Connect EDEM and 
Adams via ACSI

Adams 
Co-Simulation 

Interface 
(ACSI)

4. Simulate!
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Mobility Mapping

Leveraging the broader Hexagon portfolio (Figure 5), the Luciad 
Lightspeed technology from the Geospatial Business Unit was 
used to project the FED Alpha mobility characteristics 
predicted by Adams onto the test terrain at the Keewenaw 
Research Center (KRC). The integration of Adams predictions 
with geospatial mapping technology demonstrates the 
capability to visualize vehicle speed throughout a mapped 
domain based upon a combination of soil, grade and predicted 
vehicle performance data. Additionally, optimized routes can be 
computed based on selected route endpoints. 

Additional operational data such as side-slope predictions and 
obstacle information can be incorporated into the above 
framework, thus creating a platform for comprehensive mobility 
assessment on an actual terrain using simulated vehicle 
performance data. 

Real-Time Virtual Model Performance

To demonstrate the applicability of the full �delity Adams 
models used for mobility assessment, to adjacent Hardware 

in the loop (HIL) and ADAS applications, a reduced order, 
real-time compliant variant of the full-�delity model was 
created. The ability to derive vehicle dynamics modeling 
variants of varying �delity, to support a speci�c simulation 
intent allows users to deploy a single modeling solution 
without costly, error-prone model translations between 
various tools. Furthermore, with the Adams Real-Time 
approach, the user has additional freedom to retain model 
features of interest. Typically, real-time vehicle performance 
may be achieved with a few simpli�cations of select 
component and connection representations, depending on 
the analysis and integration requirements. In this case, only 
the anti-roll bar model was simpli�ed. The real-time model 
was tested in the VTD (Virtual Test Drive) analysis environment 
to demonstrate capability. In addition, the numerical accuracy 
and ef�ciency of this model was assessed relative to the 
baseline full-vehicle performance. 

Adams has had a long standing presence in the area of 
on-road analysis. This effort demonstrates how these models 
can be extended using the broader Hexagon portfolio and 
reused for off-road analysis in the context of road terrain 
representation, real time analysis and operational mapping. 

Learn more about Adams:  
www.mscsoftware.com/adams

Figure 5 Mapping work�ow, showing speed made good and route prediction
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E
ngineering Reality Magazine recently interviewed Chris Kinser from General 
Motors, the Director of their Global Autonomous Driving Center in Michigan 
and an industry expert in rapidly emerging sector of vehicles (AVs). He has 

and his team in Milford is responsible for vehicle integration of several 
General Motors’ advanced technology programs, including self-driving vehicles, as 
well as automated driving and active safety technologies. Chris’s expertise in software, 
controls systems and vehicle performance integration have been recognized with three 
Boss Kettering Awards. Chris holds a Bachelor’s in Electrical Engineering from Kettering 
University and a Master’s of Engineering from Rensselaer Polytechnic Institute, USA.

Autonomous 
Vehicle Testing 

With Christopher Kinser, General Motors,  
Milford, Michigan, USA

Q&A
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What does your role in General 
Motors involve and what is 
GM’s overall approach to the 
fast-emerging Self-Driving 
opportunity?

I am the Director of the Global 
Autonomous Driving Center at our Milford, 
Michigan proving ground where I manage 
a large engineering team. We believe that 
autonomous technology will play a key role 
in our vision of a world of zero crashes, 
zero emissions and zero congestion 
through the enormous potential bene�ts it 
holds for society in the form of increased 
safety and access to transportation.

General Motors is in a unique leadership 
position when it comes to developing and 
deploying self-driving vehicles in that we 
are the only company to have everything 
from design, engineering, validation, and 
testing all under one roof. My team is works 
closely with teams all around the country on 
developing autonomous driving solutions. 

What do you see as the big 
challenges to Autonomous 
Mobility going mainstream in 
the next 10 years?

We are in the middle of a fundamental shift 
in how people and goods move through the 
world. Autonomous mobility will certainly 
play a huge part in that and at GM, we will 
be guided by the needs of our customers. 
It is also one of the most dif�cult challenges 
for automotive engineering. The biggest 
challenge I see to Autonomous Mobility 
going mainstream is getting all the systems 
necessary for self-driving vehicles to work 
together seamlessly. Next time you’re 
behind the wheel, take a moment to re�ect 
on all the tasks you are performing to 
drive the vehicle. Working on developing a 
system that can perform those same tasks 
is the engineering challenge of our lifetime. 
That’s why at GM, we believe that a safe 
self-driving vehicle should be built from the 
ground up with seamless integration of the 
self-driving system. 

Will all autonomous cars be 
electric vehicles? 

At GM, we believe that all autonomous 

vehicles will be electric vehicles. Not 
only are electric vehicles better for the 
environment and quieter for city traf�c, 
but they allow for simpler integration 
of the advanced technologies required 
for the cleanest and safest operation of 
autonomous vehicles. For example, an 
all-electric vehicle has a more stable power 
source and a faster responding propulsion 
system that provide it inherent advantages 
over its internal combustion counterparts. 

Why did GM choose 
Hexagon/MSC technology 
for its Autonomous Driving 
strategy?

We see Hexagon as a company totally 
devoted to the autonomous sector in its 
business focus. Hexagon’s combination 
of sensor and scanning technologies 
like Leica cameras, and its simulation 
software suite like MSC’s VTD (Virtual 
Test Drive) software, �ll many of the 
needs of the market. VTD is in the center 
of a comprehensive GM simulation 
environment that we have developed with 
Hardware-in-the-Loop. We use VTD in 
conjunction with software products like 
CarSim and Simulink (for control systems) 
in our real time virtual automated driving 
vehicle testing environment. 

What is your vision for GM 
in the autonomous mobility 
space in say 5 years from 
now?

It is still the early days of autonomous 
mobility and we are excited by the 
opportunities for this technology to 
improve the world. In terms of engineering 
and development, we will continue to listen 
to our customers and deliver advanced 
mobility solutions that meet their needs.

Which country or countries 
do you think will go fully 
autonomous with cars �rst in 
your opinion?

I can’t speak to the speci�cs of timing, 
but we have focused our shared 
autonomous development on San 
Francisco and the United States. 

Virtual Test Drive  |  vires.com  |  15
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G
eneral Motors operates a total vehicle performance center at the Milford 
Proving Ground in Michigan (Figure 2). The Global Autonomous Driving 
Center is a subset of this work focused on developing active safety 
features like advance park assist, lane keep assist, full-speed range 
adaptive cruise, and Super Cruise. This work is guided by GM’s vision of 

a future with zero crashes, zero emissions, and zero congestion. The mission of our team 
is to provide smooth, capable driver assist systems that delight our customers. 

GM’s Approach to Automated Driving

The industry standard scale for levels of autonomy (SAE) is helpful from an academic 
perspective when discussing vehicles and their capabilities. However, when we begin 
development of a new vehicle or system, we don’t start with a level in mind, but rather 
with the use case and a set of features that we believe we can safely implement. It is this 
focus on safety that guides us through the process. 

General Motors is the only company that has everything from design, engineering 
validation, and testing all under one roof. This is more than just designing and building 
the vehicle. It also includes everything from in-house security and connectivity systems 
to software development and high-resolution mapping. Having everything under one roof 
puts us in a unique position to safely develop and deploy autonomous vehicle technology. 

Super Cruise

Super Cruise is an advanced driver assistance feature that enables hands-free driving on 
supported roads. It combines adaptive cruise control and lane-centering control with a driver 
attention system (Figure 3) to allow you to drive with your hands off the wheel and eyes 
on the road. Super Cruise is aimed at providing comfort and convenience in long-distance 
travel and daily commutes. Customers receive updated maps on a regular basis (Figure 4).

Figure 1: Cruise Autonomous Cars

Figure 2: General Motors operates a total 
vehicle performance center at the Milford 

Proving Ground in Michigan

General Motors Advances 
Virtual Autonomous 
Driving & Active 
Safety

By Chris Kinser, General Motors
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into every step in Cruise’s self-driving 
vehicles including design, development, 
manufacturing, testing and validation. 
On a typical day, Cruise autonomous 
test vehicles safely execute 1,400 left 
turns and our teams analyze all that data 
and apply learnings. Based on Cruise’s 
experience of testing self-driving vehicles, 
every minute of testing in San Francisco 
is about as valuable as an hour of testing 
in the suburbs because of the complex 
decisions being made.

Reference

‘How we built the �rst real self-driving car 
(really)’, Kyle Vogt, Cruise, September 11, 2017 
Blog Post: https://medium.com/cruise/how-
we-built-the-�rst-real-self-driving-car-really-
bd17b0dbda55 

Figure 4: GM Super Cruise, before going to 
production, required mapping every major 

road in the U.S. and Canada

Cruise Autonomous Vehicle 
(AV) Program

In May 2016, GM completed the 
acquisition of Cruise Automation a 
Silicon Valley startup with considerable 
self-driving software development 
expertise. Combined with our expertise in 
engineering and developing vehicles, our 
teams began testing self-driving vehicles 
in San Francisco, CA, Scottsdale, AZ 
and Warren, MI. By September 2017, we 
revealed our �rst self-driving test vehicle 
built from the start to operate on their 
own with no driver (1). Safety is engineered 

Safety is
engineered 

into every 
step in Cruise’s 

self-driving
vehicles

including design,
development,

manufacturing,
testing and
validation.

12   |  Engineering Reality Magazine

Figure 3: General Motor’s Super Cruise 
Cadillac Driver Attention System
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Multi-Resolution 
Traffic Simulation 
for Connected Car Applications 
using VIRES VTD

By AUDI AG: Andreas Kern 
Technical University of Munich: Manuel Schiller 
Institute of Transportation Systems: Daniel Krajzewicz 
VIRES, part of Hexagon: Marius Dupuis

AUTONOMOUS
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V
ehicular ad hoc networks 
(VANETs) have attracted a lot 
of research attention over the 
last few years because they 
have the potential to improve 

traf�c safety, ef�ciency and driver comfort. 
In fact, several ADAS (Advanced Driver 
Assistance Systems) applications, such 
as cooperative driving and subsequently 
automated driving, can only be achieved 
through wireless communication between 
the vehicles on the road. 

Since those systems often exhibit safety-
critical features, rigorous testing and 
validation must be completed before their 
mass adoption. Although real road tests 
using physical prototype vehicles offer the 
highest degree of realism, the large amount 
of resources needed to perform large-scale 
and extensive testing of vehicular networks 
renders their use impossible. Simulations 
are essential to validate the performance 
of such solutions in large-scale virtual 
environments. Furthermore, simulation-
based evaluation techniques are invaluable 
for testing those complex systems in a wide 
variety of dangerous and critical scenarios 
without putting humans at risk. 

In the automotive industry, the use of 
simulation (Figure 1) is well established 
in the development process of traditional 
driver assistance and active safety systems, 
which primarily focus on the simulation of 
individual vehicles with a very high level of 
detail. When investigating and evaluating 
the performance of ADAS based on 
vehicular communication, this isolated 
view of a single vehicle alone or a small 
number of vehicles in the simulation is not 
suf�cient anymore. Potentially, every vehicle 
equipped with wireless communication 
technology could be coupled in a feedback 
loop with the other road users participating 
in the vehicular network, and therefore, 
the number of in�uencers that need to be 
considered is drastically increased. 

These considerations lead to a trade-
off between accuracy in terms of the 
simulation details for each vehicle and 
scalability in terms of the number of 
vehicles that can be simulated with the Figure 1: ADAS simulation

available computing resources. This 
article presents an approach to solve this 
trade-off by coupling multiple resolutions 
of traf�c simulation to get highly accurate 
simulation results where they are needed, 
and simultaneously achieve an ef�cient 
simulation of large-scale scenarios of the 
surrounding environment.

The Developed Multi-
Resolution Traf�c Simulation

Microscopic Traf�c Simulator: SUMO
We chose to use Simulation of Urban 
MObility (SUMO) as the traf�c simulator 
responsible for the simulation of the 
low-resolution area (LRA). SUMO is 
a microscopic, space-continuous, 
and time-discrete simulator. While it is 
employed in a wide range of research 
domains, its most notable use is shown 
in a high number of research papers 
regarding VANET simulations. SUMO is 
well known for its high execution speed, 
as well as for its extensibility. SUMO is 
ideally suited to simulate a high number 
of vehicles residing in the LRA due to 
its ef�ciency, which is partly achieved 
through its simpli�ed driver model (which 
determines the path a vehicle will take).

Nanoscopic Traf�c and Vehicle 
Simulator: VIRES Virtual Test Drive
We employ the nanoscopic traf�c and 
vehicle simulator VIRES Virtual Test Drive 
(VTD) for the simulation of the high-
resolution vehicles. VTD was developed 
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been reached for SUMO and the condition 
TVTD ≥ TVTD + SSUMO is therefore ful�lled, the 
state of the high-resolution vehicles is sent 
to SUMO through a gateway. This triggers 
the simulation of the next timestep in the 
low-resolution model, and as a result, the 
positions of the low-resolution vehicles 
are passed back. These vehicles are now 
classi�ed, and, if applicable, the change 
of resolution is performed for individual 
vehicles. When an exchange of a vehicle 
between the simulators happens, the 
previously mentioned inherent difference 
in the underlying road network may cause 
problems if a vehicle cannot be mapped 
based on its position in a speci�c lane due 
to differences in accuracy. This is especially 
true for complex intersections which are 
modelled quite differently.

After all the resolution changes have been 
successfully completed, the simulation is 
unblocked again and the next timestep can 
be simulated. This synchronization is very 
important to ensure reproducible simulation 
results across multiple simulation runs.

Dynamic Spatial Partitioning 
of The Simulated Area

Our approach aims to couple traf�c 
simulation models of different resolutions 
at dynamic regions of interest. Contrary to 
conventional traf�c simulation, we are not 
interested in investigating a large number 
of vehicles from a bird’s eye perspective, 
but the focus is rather on a single vehicle 
(or a limited number of vehicles) which are 
used to conduct a test drive in the virtual 
environment. This vehicle of interest has the 
ADAS system under investigation onboard, 
and is referred to as the EGO car. The 
simulated measurements and sensor values 
are fed into the ADAS, and depending on its 
type and its use case, the respective ADAS 
directly or indirectly in�uences the vehicle’s 
state and behaviour.

Based on this distance criterion, an area 
of interest is de�ned that centres around 
the EGO car, and in which the de�ned 
simulative high-�delity requirements 
must be ful�lled. Since the EGO car is 
driving continuously through the virtual 
environment, this area of interest is likewise 
being moved along. We therefore partition 
the global area of the simulation dynamically 
into a high-resolution area (HRA) and a 
low-resolution area (LRA). Figure 3 shows 

Figure 3: Dynamic partitioning of the 
simulation area

Figure 4: Comparison of simulation resolution 
switching

for the automotive industry as a virtual test 
environment used for the development 
of ADAS and Autonomous Vehicles. Its 
focus lies on the interactive high-realism 
simulation of driver behaviour, vehicle 
dynamics, and sensors. VTD is highly 
modular, so any standard component may 
be exchanged by a custom and potentially 
more detailed implementation. Its standard 
driver model is based on the intelligent 
driver model; however, an external driver 
model may be applied if necessary. The 
same concept applies to the vehicle 
dynamics simulation, where the standard 
single-track model can be substituted by 
an arbitrarily complex vehicle dynamics 
model adapted for speci�c vehicles. Each 
simulated vehicle can be equipped with 
arbitrary simulated sensors, for example a 
RADAR sensor, which is shown in Figure 2.

Of�ine Pre-processing  
To Enable Coupling
The two simulators rely on different data 
formats representing the modelled road 
network. In order to be able to run a 
co-simulation of both simulators, the 
underlying data basis must match. VTD 
uses the OpenDRIVE format to specify 
the road network. This speci�cation 
models the road geometry as realistically 
as possible by using analytical de�nitions. 
SUMO on the other hand approximates the 
road network geometry by line segments. 
There are also differences in the modelling 
of intersections and lane geometries. 
To achieve a matching database, we 
convert the road network in an of�ine pre-
processing step from OpenDRIVE to the 
�le format SUMO supports.

Online Coupling and Synchronization
The coupling of the simulators at 
simulation runtime is based on the 
master-slave principle. Figure 4 shows 
this sequence of operations during a 
single simulation step, in which VTD and 
SUMO can operate with different temporal 
resolutions without losing synchronization. 

SVTD is the length of a time step for the high-
resolution area (HRA), whereas SSUMO is the 
length of a time step for the low-resolution 
area (LRA). Typically, the nanoscopic 
simulation is run at a higher frequency 
than the microscopic one. TVTD and TSUMO 
respectively denote the local simulation 
time in each simulator. At the beginning of 
each simulation step, a new timestep is 
simulated in VTD. If the next timestep has 

Figure 2: 3D visualization of a simulated 
RADAR sensor in VIRES VTD
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Figure 5: Hysteresis control of the simulation 
resolution

a schematic view of the dynamic spatial 
partitioning. There, the HRA is de�ned 
as the area of a circle which is centred 
around the EGO vehicle. Red vehicles 
are within that circle and are therefore 
simulated in high resolution by the involved 
nanoscopic simulator, whereas the green 
vehicles are outside of the circle and are 
consequently simulated in low resolution 
by a microscopic simulation. All vehicles 
exist in the microscopic simulation, but in 
the nanoscopic simulation contains only 
the high-resolution vehicles, and their 
movements are applied to their proxy 
counterparts in the microscopic simulator.

Due to the dynamic nature of road traf�c, 
the EGO car, the high-resolution vehicles 
as well as the low-resolution vehicles 
are permitted to move continuously. The 
classi�cation of the assigned resolution 
mode is therefore performed after each 
time step of the simulation. Vehicles 
for which the classi�cation has led to a 
change in resolution are transferred to 
the appropriate simulator. This change of 
resolution is possible in both directions at 
every time step. However, since the HRA is 
de�ned to be centred around the EGO car, 
it is always simulated in high resolution.

In order to prevent vehicles which are close 
to the boundary between HRA and LRA 
from oscillating very frequently between 
the two resolution areas, a hysteresis 
controller as depicted in Figure 5 is applied 
in the classi�cation process. As shown in 
Figure 3, the two thresholds Rin and Rout 

are de�ned. A vehicle is transferred into 
the high-resolution simulation only if its 
distance to the EGO car falls below the 
value of Rin. The exchange back to the 
low-resolution simulation is carried not out 
until the threshold Rout is exceeded.

Simulation & Evaluation

Scenario and Simulation Setup 
A synthetic scenario was created 
for testing the coupling concept and 
evaluating its performance. It consists of 
a single straight road running west to east 
with a length of 50 km and two lanes, one 
for each direction. Each lane is con�gured 
to have a constant inlet of 1,000 vehicles 
per hour heading either east or west. The 
EGO car is located near the start of the 
road. It drives from west to east and is 
followed by a traf�c �ow, heading towards 

the oncoming traf�c �ow. This arti�cial 
road was �rst modelled in the OpenDRIVE 
format and was then converted to the 
SUMO road network format.

We performed two series of experiments. 
In the �rst series, the nanoscopic traf�c 
simulator VTD was applied to the whole 
simulated area. In the second series, 
we used the described multi-resolution 
concept to partition the simulation area 
between VTD and SUMO. We chose 
a timestep of SVTD 20 ms for the high-
resolution area in VTD and a timestep of 
SSUMO 1 s for the low-resolution area in 
SUMO. The hysteresis thresholds which 
de�ne the dynamic area of interest were 
set to Rin 500 m and Rout 550 m.

Performance Evaluation
We measured the duration it takes to 
perform each simulation step over the 
simulation period of 1,800 s, while the 
number of vehicles was constantly being 
increased. Each series consists of �ve 
separate simulation runs to account for 
�uctuations in the measured execution 
times. To illustrate the trends of the 
measurements more clearly, the moving 
average is also displayed in the following 
�gures.

Figure 6 shows the performance 
development of the nanoscopic simulation 
while increasing the simulated vehicle count 
over the simulation period. The duration 
of each simulation step is almost constant 
up to a count of 70 vehicles. Until then, 

VTD is highly modular, so any standard 
component may be exchanged by a 
custom and potentially more detailed 
implementation.

the duration is around 12 ms, which is less 
than the timestep length of 20 ms and 
therefore yet ful�ls the real-time constraint. 
At around 150 vehicles, the duration 
is beyond these 20 ms and real-time 
simulation is not possible anymore. With 
increasing vehicle count, the duration for 
each timestep also considerably increases 
and reaches 180 ms at the end of the 
simulation period. This results in a factor 
15 computation time increase compared 
to the amount of at the beginning of the 
simulation. The overall simulation took over 
120 min to complete, which is four times 
more than the simulated time.

Figure 7 shows the performance 
development of the multi-resolution 
simulation in the same simulation scenario 
over the same simulation period. While the 
total vehicle count is increased the same 
way as in the pure nanoscopic simulation, 
the separately plotted nanoscopic vehicle 
count illustrates the number of cars 
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Figure 6: Simulation performance—nanoscopic simulation only Figure 7: Simulation performance: multi-resolution simulation

which are within the high-resolution area. 
It shows that reducing the nanoscopic 
model’s area of interest ful�ls the aim of 
reducing the overall simulation time. After 
a local maximum of 11 nanoscopic cars is 
reached, this count decreases slowly since 
slower vehicles are left behind the faster 
moving EGO car. At around simulation 
time 1,350 s, the two traf�c �ows from 
each end of the road meet in the middle 
of the road, which then increases the 
nanoscopic vehicle count. However, 
because the extent of the HRA is limited, 
the nanoscopic vehicle count does not 
exceed a certain limit, which for the given 
con�guration is at around 27 vehicles. The 
duration for the timesteps stays on average 
constant around 12 ms, so the overhead 
resulting from the coupling of the two 
simulators is negligible. The execution time 
of the microscopic simulator is also shown 
to be negligible due to its less detailed, yet 
much more ef�cient, simulation model. The 
overall simulation took less than 18 min 
to complete, so the simulation was faster 
than real time by factor 1.66 and the real-
time constraint was ful�lled throughout the 
whole simulation period.

Conclusion 

In this article, we proposed a concept 
for coupling traf�c simulators of different 
simulation resolutions to achieve a multi-
resolution traf�c simulation which focuses 

on a dynamically-determined area of 
interest. The presented methodology 
partitions the simulation area into a 
variable, highly detailed region of interest 
represented by a nanoscopic model, 
with VIRES Virtual Test Drive (VTD), and 
the surrounding area simulated at low 
resolution by a microscopic model. The 
evaluation shows a dramatic reduction of 
computation time in comparison with a 
pure nanoscopic simulation of the same 
simulation dimensions, which even makes 
real-time simulation possible. This divide-
and-conquer strategy enables accurate, 
realistic, and large-scale testing and 
validation of real implementations of driver 
assistance systems based on vehicular 
networks in a virtual environment. As 
the next step, we are investigating 
the application of the multi-resolution 
simulation methodology for the other 
domains relevant for the simulation of 
vehicular networks, namely network 
simulation and application emulation, 
to model the whole system across all 
domains ef�ciently at high �delity.
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This divide-and-conquer 
strategy enables accurate, 

realistic, and large-scale 
testing and validation of real 

implementations of driver 
assistance systems based on 

vehicular networks in a 
virtual environment.

Virtual Test Drive  |  vires.com  |  24



Virtual Test Drive  |  vires.com  |  256   |  Engineering Reality Magazine

testing have we done so far? Waymo, the world’s 
leading autonomous driving company in road testing, 
has accumulated an impressive 9 million miles in the 
past 9 years. However, even if we increase that effort 
by 10 fold, it would still take about 100 years for us 
to complete the validation of one self-driving system, 
if we solely rely on road testing. 

As long as you only have to check a few use cases 
(in the range of tens), you can easily test them on 
real roads. However, in order to assure safety for 
Autonomous Vehicles, the number of conditions to 

Figure 1. Autonomous Vehicle Testing Platform Developed 
by AutonomouStuff, Part of Hexagon

Self-driving is becoming more and more 
realistic. Every day, thousands of autonomous 
vehicles (Figure 1) are being tested on the 

roads by companies like Waymo, Cruise, Uber, Tesla, 
and some of those companies have accumulated 
millions of miles of road testing data, enhancing and 
validating their autonomous “brain”, with the hope that 
in the near future, full automation can be achieved. 

When the Pumpkins Take a Stroll

Today, everyone understands the importance of road 
testing for self-driving vehicles, and the industry is 
spending a fortune on it. On an average, a fully 
equipped autonomous vehicle can cost more than 
half a million dollars, so a small �eet of 20 vehicles 
would mean a 10-12 million dollars investment in the 
hardware itself, to perform the road testing for 
autonomous driving. However, is road testing really 
enough to help us reach level 5 autonomy in the 
foreseeable future?

To answer that question, �rst we need to 
understand: how many miles of testing is required to 
develop an autonomous driving system? The 
commonly accepted number among the industry is 
“one billion miles”. So how many miles of road 

Achieving  
Autonomous Driving  

with Simulation & Testing

By Dr. Luca Castignani, Chief Autonomous  
Driving Strategist, MSC Software



be evaluated scales quickly to millions and there is 
no way to tackle it without simulations. For example: 
What if you want to know how the car will behave 
when the city decides to paint all the road signs in 
yellow instead of white? Or what happens when the 
trees planted today grow to a size that prevents the 
driver from seeing the pedestrians?

With simulation, it’s also possible to create outlier 
scenarios for testing. Think of workers carrying a 
large mirror while crossing the street. Think of 
children dressed up as pumpkins, out for a walk on 
Halloween. Not many of these scenarios have been 
taken into consideration, but those are the realities.

How is Autonomous Driving Simulation 
Different than the Traditional Vehicle 
Simulation? 

Computer-aided engineering (CAE) simulation has 
been a trusted tool leveraged by the automotive 
industry for dozens of years now. From vehicle 
handling & steering, ride & comfort (Figure 2), NVH, 
durability, aerodynamics, controls validation, all the way 
to manufacturing process simulation and advanced 

Adams, Part of Hexagon

materials (composites) analyses, CAE companies like 
MSC Software (acquired by Hexagon AB in 2017) 
have been providing industry leading simulation 

attributes of every newly developed vehicle model. 

Engineers have been using CAE to improve the 
vehicle performance for a long time, so how is 
autonomous driving simulation (Figure 3) different 
than the traditional CAE simulation?

First of all, in an autonomous simulation environment, 
we need to capture more than the vehicle under 
design (the so called “Ego Vehicle”). Different types 
of participants need to be included in the scenario, 
for example, other vehicles, pedestrians, cyclists, 
animals (moose, deer, kangaroos) and so on. 

Secondly, a realistic perception is crucial to 
accurate simulation. Unlike the vehicle models in a 
traditional CAE environment, the “Ego Vehicle” in an 
autonomous testing model doesn’t always have a 
perfect understanding of its surroundings. Instead, 
it only knows what its sensors perceive, therefore it 
is important to accurately simulate those different 
types of sensors (cameras, RADAR, LiDARs…) and 
also how they function especially in adverse 
atmospheric conditions (sun glare, fog, snow, rain, 
evening light…). 

These are just some examples that highlight how 
autonomous driving simulation is very different than a 
traditional CAE car simulation, and for those same 
reasons, not every traditional CAE solution provider 

simulation partner.

Figure 3. Autonomous Driving Sensor Simulation Environment 
by Vires VTD (Virtual Test Drive), Part of Hexagon 
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A Comprehensive Strategy for 
Autonomous Driving Simulation  
and Testing 

Through a series of acquisitions with MSC Software 
and VIRES VTD in 2017, AutonomouStuff in 2018, 
along with indigenous domain expertise in sensors, 
smart city and positioning intelligence solutions, 
Hexagon holds the leading edge in autonomous 
driving validation (Figure 4). This includes solutions 
for these domains: Vehicle CAE Modeling, Sensor 
Measurements and Modeling, 3D Environment 
modeling, Scenario Testing, Data Management, AI 
Driver and above all an open platform on which to 
integrate these.

A. Virtual Test Drive (VTD) 

VTD is an open platform for creation, con�guration, 
and animation of virtual environments for the testing 
and validation of Autonomous Vehicles. It acts as the 
coordinator for the domain segments mentioned 
above. It receives vehicle position and motions, 
rebuilds the 3D environment in real time (including 
traf�c and pedestrians), computes the sensor 
perception, calculates the movements of all 
surrounding vehicles and so on. This stream of data 
can then be used to train the AI Driver at all levels 

(sensor fusion, object detection, path planning) or to 
assess its performance in terms of safety, comfort 
and ef�ciency. 

B. Vehicle CAE Model

Depending on the scenario that the simulation needs 
to address, having vehicle models with different level 
of complexity can be handy. For example, for a 
common scenario such as emergency braking on a 
highway, a simpli�ed model is preferred so a higher 
number of scenario permutations can be veri�ed in a 
given amount of time. For a more dynamic scenario 
that perhaps involves a swift lane change to avoid a 
crash, a higher �delity Adams Car model with a 
well-correlated suspension system is going to be 
essential. Not to mention that within an autonomous 
vehicle the riding comfort will become even more 
critical to the passengers such as to not suffer 
motion sickness while reading your favorite book or 
working with the laptop.

C. Sensors and Sensor Models

VTD has a complete set of sensors to replicate the 
physical sensors used in an autonomous vehicle: 
cameras (included infrared), LiDAR, RADAR and 
ultrasonic sensor. Each sensor can be represented 

Figure 4: Hexagon’s Complete Autonomous Driving Simulation & Testing Portfolio



F.

The AI Driver is the core of every autonomous system, 
and users can easily connect VTD to their own AI 
Driver to carefully validate them under all conditions, 
including sensor failure or misbehavior such as mud 
sputters covering a portion of a LiDAR. MSC Software 
is also working with its sister company, 
AutonomouStuff (both part of Hexagon), to connect 
AutonomouStuff’s AI Driver to VTD so partners of 
AutonomouStuff can run their physical road tests and 
virtual tests with exactly the same AI brain.

In summary, today Hexagon owns many of the 
simulation and testing assets necessary for 
autonomous car projects: sensors and technology 
to manage smart intermittent sampling, HD maps 
from Hexagon Geosystems, and a turnkey platform 
for autonomous vehicle development from 
AutonomouStuff. Add in MSC Adams vehicle 
modeling, VTD to recreate the external environment 

SimManager, and there is a very compelling turnkey 
autonomous vehicle solution toolset for both 
simulation and testing awaiting both OEMs and 
Start-ups around the world.

Figure 5. Creating Virtual 3D
Environment in VTD from Metrology

Road Measurements

surfaces to simply capturing the basic sensor 
characteristics (in order to achieve the maximum 

the variety of the sensor models, team VTD is also 
working with the world-leading sensor manufacturers 
like Leica and NovAtel (all part of Hexagon). 

D. 3D Driving Environment 

A 3D virtual environment can be generated either 
from inside VTD, or from scanning the actual roads. 
Creating the environment inside VTD gives you 
maximum control over all the details, while 
generating the 3D environment from measurements 
(LiDAR/camera) is more realistic and much faster. 
With Hexagon’s new Leica Pegasus:2 mapping 
platform and its connection with VTD (Figure 5), 
engineers are expected to speed up the “Road 
Digitization” by a factor of 20 in the near future. 

E. Scenarios and Data Management

Arti�cial Intelligence (AI) Driver

With millions of scenarios to be evaluated at each 
step of the autonomous vehicle development, there 
is simply no way to manage everything manually. 
Indeed, Intel calculates that 1 Petabytes of data will 
be generated each day by an autonomous vehicle. 
That is where SimManager, the simulation 
management platform of MSC, comes into play to 
store the generated data and appropriately label 
them for easy access at any stage. With such a 

“needle in the haystack” (such as “extract all 
simulations with rain”) is like child’s play and to 
compute meaningful performance indexes (such as 
“average time to collision”) becomes a no-brainer. 
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INTRODUCTION

Due to advancements in sensor technology and data 
processing algorithms over recent years, great 
progress has been made to enable automated driving 

systems to improve safety and comfort for the vehicle driver 
and occupants. Yet, due to the complexity of self-driving, one 
of the main challenges remains in ensuring and validating the 
safe conduct of the automated driving systems for public use.

Virtual worlds provide a suitable, safe and controlled 
environment to handle an important part of the required testing 
and validation efforts. A proper choice of scenarios as well as 
the generation of virtual sensor data that closely matches reality 
are among the central requirements for the success of the virtual 
development approach. Virtual sensor data is generated by 
means of sensor models that form a central component of the 
virtual environmental perception (Figure 1). This perception data 
constitutes one of the main input streams for the decision 
making algorithms of an automated driving system. Hence, the 
�delity of the sensor model is a deciding factor for the viability 
and validity of virtual development and testing.

Generally speaking, there are two types of sensor models: 

Sensor error models aim to reproduce the statistical 
characteristics of errors, i.e. deviations between the perceived 

Figure 2. LiDAR Model Simulation in VIRES VTD

and true values, of the measurement and perception 
performed by vehicle sensors. 

Sensor measurement models, on the other hand, are based on 
a physical description of the measurement process, and they 
generate low-level measurement data based on the virtual 
scene. Models of this type are commonly used for a variety of 
sensors in robotics research, while the measurement models 
for automotive sensors are only emerging.

In this article, we introduce a sensor measurement model for 
an automotive LiDAR sensor. The model is based on a ray 
tracing approach for the simulation of the measurement 
process. This enables the real-time generation of a LiDAR Point 
Cloud within the framework of an automotive driving simulator. 
By directly comparing data from the real-world test drive to 
virtual data generated by the sensor model in a virtual 
environment, we are able to quantify the accuracy and validity 
of the sensor model using appropriate metrics.

SENSOR MEASUREMENT MODEL 

A. Real-time Ray Tracing in a Driving Simulator

We consider the scanning type of LiDAR sensor, which is 
typically used in the automotive industry. This type of sensor 
determines distance by measuring the travel time of a laser pulse 
re�ected by a target surface. Its angular resolution is achieved by 
means of scanning, i.e. by moving the transmitted laser beam as 
well as the selective �eld of view of the optical detector array 
successively over the sensor’s complete �eld of view. Most 
commercially available systems at this time employ a 
mechanically rotating mirror for the scanning task. The operating 
principle of this type of sensor lends itself to a modeling 
approach using ray tracing techniques. The virtual environment 
for the proposed sensor model is provided by the Vires VTD 
driving simulation software (Figure 2), which offers a ray tracing 
framework based on the Nvidia OptiX ray tracing engine. 

Figure 1. Virtual Sensor Models in VIRES VTD Environment

Figure 3. Tool chain for sensor model validation
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B. Virtual Point Cloud Generation

To model the beam transmission, re�ection, and detection of the 
LiDAR sensor, the camera program of the sensor measurement 
model generates a ray for each set of azimuth and elevation 
angles. That results in a Point Cloud, if a valid distance 
measurement is obtained (see reference 1 for more details). 

SENSOR MODEL VALIDATION 

A. Methodology for Validation

For the validation of the LiDAR sensor model described in section 
II, we propose the procedure shown in Figure 3. This method is 
based on the comparison of real and synthetic data. In the �rst 

step, real data is captured with an experimental vehicle equipped 
with LiDAR sensors, a differential global positioning system 
(DGPS) and environment model algorithms running in ROS 
(middleware) and including an occupancy grid implementation. 
Then, synthetic data is generated using the LiDAR sensor model 
described in section II and exactly the same occupancy grid 
implementation as used in the experimental vehicle, but provided 
with simulated data from the sensor model in VIRES VTD. For 
data exchange between the model and ROS, the Open 
Simulation Interface (OSI) is used. As soon as real and synthetic 
data are captured, we evaluate the data in the validation 
framework using Matlab in a two-step procedure. In the �rst step, 
the direct comparison of real sensor data and model output is 
taking place. In the second step, we compare occupancy grids 
generated with real and synthetic LiDAR data representing the 
static environment of the test vehicle.

B. Validation Premises

For the validation of the sensor model, a static scenario is 
evaluated (see Figure 4). The two vehicles, Ego (E) and Target 

Figure 4. Static Validation scenarios with 40m distance between ego 
and target

Figure 5. Sampling grids for ray tracer: (a) Cartesian (b) Spheric

(a) (b)

Figure 6. Visualization of Point Cloud: (a) real Point Cloud, (b) synthetic Point Cloud from SC1, (c) synthetic Point Cloud from SC2

(a) (b) (c)

Figure 7. Visualization of occupancy grids: (a) real occupancy grid, (b) synthetic occupancy grid from SC1 (c) synthetic occupancy grid from SC2.

(a) (b) (c)
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TABLE I: Calculated results for different validation metrics: overall 
error, Barons and Pearson correlations at different validation levels: 
Point Cloud, scan grid and occupancy grid.

(T), shown in the schematic have an approximate distance of 
D1 = 40 m to each other. This area was modeled as a virtual 
3D model for a simulator with particularly high �delity 
requirements with respect to geometric dimensions and 
positions. Using this scenario, we show how the modeling of 
the LiDAR sensor’s geometric con�guration can be tested and 
how different con�gurations in�uence the generated Point 
Cloud and occupancy grids. 

Two different sensor con�gurations SC1 and SC2 of the model 
approach are applied in this study. SC1 uses a Cartesian 
sampling grid for ray generation visualized in Figure 5(a), and 
SC2 uses a spherical grid shown in Figure 5(b). Usually for image 
generation, a linear distribution of rays generated with ray tracing 
is needed, so the SC1 approach would be the right choice. 

SUMMARY AND FUTURE WORK

In this article, we propose a physically motivated sensor 
measurement model based on a ray tracing approach for an 
automotive LiDAR sensor. The model was employed to faithfully 
recreate the full sensor processing chain in a virtual environment 
with the help of VIRES VTD. Furthermore, a full processing chain 
in the virtual environment starting from low-level sensor data and 
ending with the �rst fusion stage of the whole automated driving 
system was reproduced in a virtual environment. With the 
presented setup, it is possible to evaluate real driving situations 
and reconstruct them in the simulation from high-�delity data for 
static and dynamic scenarios. As sample use cases, we showed 
a static situation on a parking lot. We could quantify how closely 
the internal environment representation, i.e. the input to the 
automated driving function, matches between real world scenario 
and the simulation using a raw data LiDAR sensor model and 
appropriate validation metrics. The results represented in this 

paper show a higher correlation between real and synthetic data 
using the sensor model with a spherical ray tracer sampling grid. 

See the Latest Solutions  
in Autonomous Driving:  
www.mscsoftware.com/autonomous
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Model  
State

Validation  
Level

Overall  
Error

Barons  
correlation

Pearson 
correlation

S
C

1

EDM PC 8729.2 0.733 0.824

SG 1.0816 × 106 0.637 0.679

OG 2.3668 × 106 0.602 0.677

S
C

2

EDM PC 8566.4 0.743 0.832

SG 9.385 × 105 0.721 0.764

OG 2.117 × 106 0.634 0.703
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However, since the geometry of the beam de�ection of a LiDAR 
sensor leads to a conic shape of the point cloud, the spherical 
sampling grid is a more suitable choice for this purpose.

C. Data Evaluation

a. We start the investigation with a qualitative inspection of the 
captured Point Cloud shown in Figure 6. Visually observing the 
Point Cloud, it is obvious that the real Point Cloud is more 
similar to the Point Cloud generated from Sensor Con�guration 
2 (SC2) compared to Sensor Con�guration 1 (SC1). 

b. As mentioned before, occupancy grids are used as an 
abstraction level for sensor model validation. Here, we 
additionally use scan grids (SG) as a further abstraction 
level. Scan grids are single shot recordings of occupancy 
grids generated from a Point Cloud, whereas the 
occupancy grids are over time accumulated scan grids.

For evaluation of the environment model output, the real world 
scenario is re-simulated, and scan grids as well as occupancy 
grids are computed using generic Point Clouds from the two 
sensor con�gurations. The scan grid results are shown in Figure 
7. Visually comparing the scan grid representations of the two 
sensor con�gurations with the real data, we can see a higher 
alignment between the real scan grids and the scan grids from 
the SC2. To quantify this observation, three metrics are applied 
and summarized in Table I. Similar to the quantitative results from 
the Point Cloud evaluation, these values show lower overall error 
and higher correlations between real scan grids and scan grids 
from SC2 compared to SC1.
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Shaping Smarter Simulation 
with Arti�cial Intelligence

By Dr. Horen Kuecuekyan, Director of Product  
Development & Arti�cial Intelligence, MSC Software

Simulation provides key insights into system 
behavior and performance, especially with 
design optimization and validation. However, 

there are many instances where simulation or design 
exploration is not applicable because of limited 
computational resources. 

Arti�cial Intelligence (AI) is a promising approach to 
help reduce the less important simulation scenarios by 
studying the existing simulation data. Many different 
machine learning algorithms are applied to train an 

Figure 1. A typical scenario to test an autonomous driving 
system using VTD

AI-model, such as decision trees, random forests, 
fuzzy logic, Markov decision-based arti�cial neural 
networks DQN (Deep Queue Networks), and various 
other re�nements beyond DQNs. In many instances, 
an AI-model is not required to have the same �delity 
as an actual simulation model, since most engineers 
simply expect the trained AI-model to be better and 
more consistent than the engineering judgement or 
simpli�ed (reduced order) models.  

When there is not a suf�cient amount of physical 
data available, simulation generates the simulation 
data to train a reliable AI-model.   

Our Arti�cial Intelligence team at MSC Software 
focuses on applying AI technologies both on the 
existing simulation data and also on strategies to 
generate simulation data in the AI process. 

Here are Some of the Key  
Application Areas: 

Development of AI Sampling: AI Sampling will 
generatively create the individual simulations to be 
used for multiple purposes, including training the 
AI-models. One application of the AI Sampling is our 
initiative to create a Smart Testing Environment for 
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set and create a feasible and relevant set of test cases, 
which covers all the different situations that can occur. 

Creating the Predictive Models: We refer to the 
predictive models as “AI Twins” (Figure 3).  AI Twins 
can predict the outcome of simulation studies and 
can be used in the product development lifecycle 
when performing the traditional simulation is too 
costly or takes too much time.

Our AI team at MSC Software is working with the goal 
to train AI to learn from simulations, to extend the 
knowledge over time, and dramatically increase the 
performance and ef�ciency in the modeling process. 

Applying AI and machine learning tools in the 
technological applications can enhance simulation 
ef�ciency, improve product quality and reduce 
production costs. AI Sampling will automate the 
simulation generation, sample the constantly growing 
design space, and help autonomous driving 
developers to capture the millions of scenarios that 
are needed to achieve level 5 autonomy. 

Figure 3. MSC AI Twin

Figure 2. End-to-end cycle for the 
variation, simulation, result 

evaluation and training of the AI for 
the autonomous system

Autonomous Systems (STEAS). The AI Sampling will 
generate the test plan to perform the relevant and 
important scenario simulations (Figure 1) to validate 
either ADAS (advances driver assistant system) or 
fully autonomous systems.

One of the main questions people ask around 
autonomous systems is, “how can we generate and 
test the millions of scenarios that are needed to 
virtually validate an AI Driver?” 

With AI-sampling, we are developing a solution to 
handle this huge “event space” (Figure 2). The basis for 
AI-sampling is a parametric and modular scenario 
library, which allows the creation of a broad set of 
individual test cases. The simulation results are analyzed 
and classi�ed on their relevance and diversity, and then 
used in the AI Sampler as inputs to create a more 
re�ned test case set with each iteration. This test case 
set represents all the different behavior patterns to be 
tested, veri�ed, and applied to analyze the simulation 
databases on their relevance. By applying this iterative 
process, AI Sampling can learn how to optimize the test 
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Road Testing or Simulation? 
– The Billion-Mile Question  
for Autonomous Driving 
Development

By Dr. Luca Castignani, Chief Autonomous Strategist, MSC Software

Figure 1. Autonomous Driving is a Fast 
Growing Industry
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Just two years ago, the future looked so bright for autonomous 
vehicles and everything was coming at a fast pace. Most auto 
OEMs, Tier 1 suppliers and hundreds of start-ups around the 
world presented their aggressive plans to bring self-driving 
vehicles on our roads. Traditional OEMs were a bit more 
cautious, but new players were very bold in their 
announcements, which is understandable considering that they 
had to convince their investors that the future of Mobility-as-a-
Service (MaaS) was coming very soon. 

And then, something tragic happened early in 2018. 
Something that had not been foreseen by many people, 
blinded by the hype that was burning millions of dollars on a 
daily base. A vehicle used by Uber to perform self-driving test 
(it would be wrong to call it “a self-driving vehicle”, since 
nothing like this exist as of today, and what we see on our 
streets are just “test platforms”) hit and killed a woman crossing 
the street in Arizona.

The reaction from the public was immediate and strong, 
which put into question not just Uber but also the whole 
self-driving effort (NVIDIA lost 10% of its market value in the 
following 2 weeks). The Washington Post titled “Fatal Uber 
crash spurs debate about regulation of driverless vehicles” [1] 
and the Guardian “Uber crash shows catastrophic failure of 
self-driving technology” [2]. 

What should be the lesson learned from this case? A LinkedIn 
user expressed it in the best way: “It is completely unacceptable 
that undesirable beta software is being tested on the roads. This 
is not an online game where you have several lives”.

Achieving autonomous vehicle functionality and safety requires 
millions of tests to cover all driving scenarios, and there is no 
way to get even close to that if not extensively using (to an 
extent never dared in the history of engineering) simulation in 
the virtual world. Trying to achieve level 5 autonomy only (or 
mostly) with road testing is as useless as boiling the ocean.

We are engineers, so let’s do some basic mathematics. 
According to the US traf�c accident reports [3], statistically, 
there is one person killed on the road for every 140 million 
kilometers driven. Therefore, to statistically prove (with 95% 
con�dence) that an Autonomous Vehicle is as good as a 
human driver, it has to be tested for 415 million kilometers 
without causing any death [4]. 

Many self-driving enthusiasts claim that “autonomous vehicles 
will reduce the number of people killed on the road by a factor 
of 20” [5]. But this a very bold statement that needs to be 
proven before being accepted by the general public, regardless 
of how appealing it sounds. After all, we are scientists, and we 
believe in data. And the data that we need to prove that the 

Figure 3. The end-to-end autonomous simulation work�ow

Figure 2. Simulating Autonomous Vehicle driving on a highway in 
Beijing, China. Simulation done in VIRES VTD.
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autonomous vehicle is “as good as” a human driver, is 415 
million kilometers. Do you claim your system is 20 times 
better? To statistically prove it, show me your results after 8 
billion kilometers of testing!

By the way, every time someone modi�es the position of a 
single sensor, the counter has to restart! Every time that some 
vehicle characteristic is changed (e.g. wheelbase, mass…), the 
counter has to restart. And every time a piece of software is 
updated… the counter has to restart!

Is there still someone that believes that road testing can bring 
you even close to full autonomy? Does anyone still believe 
that accumulating 1 million kilometers of road testing is a goal 
to be celebrated?

Take Waymo as an example (for the few of you who do not 
know them they are the “self-driving branch” of Google and 
they are considered the leaders in this space). Well, in 10 years 
they have accumulated 16 million kilometers of road data (really 
an outstanding outcome, even if most of these kilometers have 
been accumulated on sunny days in California and Arizona); at 
this rate, the richest company in the world would need over 
200 years to prove they are “as good as human drivers”. And 
that’s why besides the road testing, Waymo is also running a 
�eet of 25 thousand virtual cars 24/7, simulating 13 million 
kilometers per day [6]. “Computer simulations are actually more 
valuable, as they allow manufacturers to test their software 
under far more conditions and stresses than could possibly be 
achieved on a test track.” said Ron Medford, Google’s safety 
director for the self-driving car program. 

Everyone understands the necessity for road testing, but at the 
same time, we should notice that there are obvious drawbacks. 
Besides being slow and potentially dangerous if the testing is 
done prematurely, road testing is not repeatable or controllable, 
which are essential for autonomous system development. 

To solve these issues, engineers tend to leverage the proving 
ground, which is much more repeatable. Moreover, real 
sensors can be evaluated on an actual vehicle. However, one 
of the disadvantages for the proving ground is the limited 
number of scenarios that engineers can test with. Each proving 
ground usually contains a set of scenarios and generally 
speaking it is slow and costly to build/construct new scenarios 
in the proving ground.  

Now let’s take a look at simulation or virtual testing. In my opinion, 
there are a few key reasons why simulation is more applicable 
than road testing or proving ground for autonomous system 
development, especially in the initial phases of the project. 

First, virtual testing is more scalable when it comes to cost. A 
fully equipped autonomous vehicle can cost up to half a million 
dollars, so a �eet of 200 vehicles would mean a 100 million 
dollars investment in the hardware itself (vehicles, sensors, data 

storage, wiring…). On the other hand, scaling virtual testing 
only requires you to have software licenses and CPU/GPUs to 
run the simulations, which is generally 100 times cheaper. Not 
to mention the operational cost to manage such a large �eet of 
vehicles (drivers, insurance, workshops, maintenance…). As an 
example of this scalability, BMW recently announced their new 
High-Performance-Cluster dedicated to the development of 
Autonomous Vehicles with more than 100,000 cores and more 
than 200 GPUs [7].

Secondly, the ground truth is always available in virtual testing. In 
the virtual environment, you always know if it is a pedestrian or if 
it is a car in front of you, and there is no need to hire service 
companies to do annotation/labeling for the road data that you 
collect from testing. When it comes to one billion miles of road 
data that is requested to validate the autonomous system, it is 
simply infeasible to annotate it all with human labor. 

Thirdly, with simulation, engineers would be able to test the 
functions of the controller software in the early design stages. 
One would be able to test the different functions of the 
software separately with model-in-the-loop simulations without 
having to wait for the entire control system to be completed. 
Since you can replay the virtual scenarios as many times as 
you want, it’s much easier and cheaper to analyze, debug or 
iterate the core algorithms without having to consider the 
nuances of the actual production software. 

“Many self-driving 
enthusiasts claim that 
‘autonomous vehicles 
will reduce the number 
of people killed on the 
road by a factor of 20.’ 
But this a very bold 
statement that needs 
to be proven before 
being accepted by the 
general public, 
regardless of how 
appealing it sounds.” 
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Finally yet importantly, it is much more convenient to create 
permutations of a situation with virtual testing. Engineers can easily 
repeat the same test with a different set of parameters, like more 
pedestrians, higher speed, less sensor visibility, lower road friction, 
and many more. Permutations of a few basic scenarios with 
multiple parameters creates thousands of scenarios. And that’s the 
key to ensure robustness and reliability of driving algorithms. 

Autonomous Vehicle (AV) simulation is different from traditional 
vehicle simulations in a sense that apart from the vehicle itself, 
also the “environment” in which the vehicle operates is 
fundamental to assessing how it copes with all driving 
situations. The “environment” of an AV is quite rich (and 
sometimes crowded) as it includes all other vehicles, 
pedestrians, animals and of course the road, the sidewalks, 
buildings and even weather conditions. So, let’s take a closer 
look into all these components.

To start with, the engineers need a vehicle model which 
represents the same dynamics characteristics as the actual 
vehicle. When you train the AI controller to drive the actual 
vehicle, the vehicle model needs to incorporate not only the 
correct mass and engine power, but also other correct 
behaviors like braking ef�ciency, or the load transfer during 
cornering events. All these performances are heavily in�uenced 
by the fundamental suspension designs (dampers, antiroll 
bars…) and the tire-road interactions.

Besides the vehicle model, the 3D environment also needs to 
be carefully constructed. 3D environments include the road 
network, which de�nes the space that the vehicle can occupy, 
and when and how the vehicle can occupy each lane. Besides 
the road itself, the immediate surroundings of the road is 
equally important. Trees and bushes can obstruct the view of 
the traf�c signs, pedestrian from the sidewalks may suddenly 
decide to cross the street, buildings on the side of the street 
may cast shadows on to the road or reduce GPS accuracy. All 
these elements have to be realistically modeled to properly set 
the scene where the actions take place. 

Of course, the autonomous vehicle shares the road with other 
vehicles, which can be bicycles, motorbikes, cars, buses, 
trucks with trailers, Segway, a police of�cer on a horse or 
anything else. Anything that is allowed to be driven on the road 
should be included in this case. And any of those participants 
might have their own way of interacting with the rest of the 
traf�c. For example, a motorcycle splitting lanes during a traf�c 
jam, while a large truck can easily get stuck in the traf�c 
because of its slow acceleration, and a cyclist might decide to 
move from the sidewalk to the middle of the road to make a left 
turn. It is important that all those traf�c participants be 
captured in their unique ways of maneuvering. 

The pedestrian and their behaviors also need to be modeled, 
especially the way they interact with the oncoming traf�c. The 
engineers need to reproduce the gestures of the pedestrians, 
for instance, whether or not they are watching the traf�c, when 
they are distracted by texting on the phone while crossing the 
street. Animals’ behaviors can be even more unpredictable, like 
jumping in front of the vehicle erratically, getting stuck in the 
middle of the road, or staring at the car when it’s approaching. 

The last important factor one needs to consider for the 
environment simulation is weather and lighting, which is 
critical since it impacts the way sensors perceive the scene. 
When it’s raining outside, the vehicle needs to slow down 
because the driver’s vision and the road friction have been 
changed. With the low-lying sun during sunset or sunrise, 
human driver needs to wear sunglasses because otherwise 
he/she couldn’t really see the road clearly. Similarly, they also 
affect sensors like cameras, RADARs, or LiDARs. Fog 
reduces the visibility of a camera (and absorbs energy from a 
RADAR) and LiDARs are sensitive to rain drops since they 
scatter the laser beams. 

Actually, the perceived sensor data is the most valuable piece 
of information that the AV simulation provides. With this data 
accurately available, engineers can focus on the following 
phases of the Autonomous Driving development. 

Figure 4. Simulating pedestrian crossing the road while on cell 
phone. Simulation done in VIRES VTD.

Figure 5. Simulating vehicle driving during evening. Simulation done 
in VIRES VTD.
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The �rst step is the so-called “sensor fusion” phase, in which 
data from different sensors is combined to calculate accurate 
position and orientation information. From the camera, the 
object is recognized, and when you associate the laser point 
cloud with the object, the distance to the object can be 
measured with LiDAR. And RADAR can even provide the 
speed of the object. 

Now that the engineers have a clear understanding of the 
surroundings of the Ego vehicle, they can move on to the next 
phase, which is typically called “path planning”. With the 
understanding of the pedestrians and the other vehicles in the 
traf�c, the engineers need to predict what those other traf�c 
participants will do in the next few tenths of second to the next 
few seconds. And essentially the vehicle needs to decide at that 
point what the safest thing is to do to cope with the situation. 

Even with the sensor fusion, sometimes the situation is still not 
100% understood by the AV (autonomous vehicle). If the 
vehicle is driving on the highway on a sunny day, all the 
sensors are giving the correct information and the vehicle has a 
clear view of a long distance ahead. But imagine if the 
autonomous vehicle is driving on a crowded street in New York 
during rush hour on a foggy day, you can’t always tell if there’re 
two pedestrians or three pedestrians in front of you. When the 
vehicle makes a decision as to which path to follow, it needs to 
consider not only the destination, but also what the safest 
route is to get there. 

After the safest path is identi�ed, it is time to decide on how to 
actuate the vehicle, which means how to apply the throttle, the 
brake, the steering wheel to follow that path, or how to adjust 
the damping in the suspension system to ensure a smooth 
ride. This is the so called “actuation phase” and is the 
playground of very specialized engineers that master control 
theory of ground vehicles.

In the virtual simulation work�ow, all this information is being 
provided to the vehicle dynamics model as closed loop 
feedback. And based on those inputs with torques/forces, the 
vehicle model predicts its updated displacement, velocity and 
orientation to interact with the surroundings (including 
oncoming traf�c or pedestrians that may be triggered to cross 
the street) and the simulation loop proceeds. 

VIRES Virtual Test Drive (VTD) provides all the ingredients 
necessary for engineers to perform the autonomous driving 

simulation, and at the same time, VTD is compatible with not 
only MSC Software’s internal technologies, but also with a 
number of 3rd party software. As an example of this, while VTD 
offers 2 different embedded techniques to represent the vehicle 
dynamics (with varying speed of simulation and accuracy of 
results) it can also be combined with Adams Car (the de facto 
standard in vehicle dynamics simulation) or with any other 
vehicle dynamics software. Same applies to the traf�c models: 
VTD offers the most comprehensive traf�c simulation 
capabilities in the industry (driving style of every vehicle can be 
set according to a number of parameters, and thousands of 
vehicle can be simultaneously simulated if necessary); 
nonetheless other traf�c models can be incorporate into VTD 
as well, such as SUMO [8] or PTV Vissim [9].

Autonomous Driving is one of the most exciting, yet daunting 
tasks in the next decade to come. Road testing alone will never 
get us anywhere close to the billion miles of validation needed 
to ensure the safety of an autonomous car. In order to develop 
an autonomous driving system that can truly save tens of 
thousands of lives, comprehensive simulation of the real world 
is the key to success. 
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